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Dust acoustic solitons with variable particle charge: Role of the ion distribution
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Dust-acoustic solitons of large amplitude with variable particle charge are studied using the Sagdeev qua-
sipotential analysis. Two limiting cases of ion distribution are considered separately: Boltzmann and highly
energetic cold ions. It is shown that in both cases only compressive~density! solitons are possible. The charge
variation is not important in rarefied particle clouds, but becomes crucial if the particle number density is
sufficiently high. Analytical expressions for the range of Mach numbers where solitons might exist are ob-
tained. It is found that solitons are allowed in the supersonic regime, and that in dense clouds the width of the
Mach number range remains finite for the Boltzmann ions, but tends to zero for highly energetic ions.
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Wave motion of charged micron-sized particles in
plasma—the so-called dust-acoustic~DA! mode @1#—has
been studied extensively. Most of the work was focused
the investigation of small-amplitude waves exploring the
fluence of various parameters on properties of the wave
persion relation. Large-amplitude~nonlinear! stationary DA
waves might also exist in complex~dusty! plasmas: Similar
to the ion-acoustic~IA ! waves, nonlinear corrections to th
DA phase velocity makes the wave front steeper, whereas
dispersion at short wavelengths has the opposite effect@2#.
Therefore, a balance between these two mechanisms is
sible, leading to stationary nonlinear DA waves.

One of the most interesting types of nonlinear waves
solitary waves. DA solitons of large amplitude have be
studied in a number of papers, using the Sagdeev qu
potentials@1,3–9#. It was shown that particular ion distribu
tions are required for the existence of both compressive
rarefactive solitons@6#, as well as for double layers@4,6#. It
was also emphasized that the self-consistent variation of
particle charge in the wave might be important@7–9#, and
distinguishes the DA solitons qualitatively from the IA so
tons.

In this paper we study the Sagdeev quasi-potential for
solitons with variable particle charge, and we consider se
rately two limiting cases of the ion distribution: Boltzman
and highly energetic cold ions. This allows us to understa
qualitatively how the soliton solution depends on the p
sible plasma parameters in a discharge~bulk plasma, sheath!.
In particular, we show that the charge variation is not imp
tant in rarefied particle clouds, but becomes crucial if
particle number density is sufficiently high. We obtain an
lytical expressions for the range of Mach numbers wh
solitons might exist, and the corresponding values of
electric potential in the wave. The derived scaling depend
cies could be useful for comparison with experimental m
surements.

We assume that the thermal velocity of the particles
much smaller than the phase velocity of DA waves. This
valid when the the ratio of the particle kinetic temperature
the ion temperature is much less than the particle cha
number: T/Ti!Z ~usually, T/Ti&102 and Z;1032104).
Then we can neglect both the particle pressure and kin
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effects caused by the particle-wave interaction@10#, and use
the fluid equations for the particle component,
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wherem andn are the particle mass and number density,v is
the particle velocity, andf is the electric potential in the
wave which is described by the Poisson equation,

]2f

]z2
524pe~ni2ne2Zn!. ~2!

Here ne and ni are the electron and ion number densitie
The time scale of DA wave is*vpd

21;121022 s, so that it
is reasonable to suppose that the Maxwellization time
electrons is much smaller. Thus, we can use the Boltzm
distribution for electrons,

ne5ne0 expS ef

Te
D . ~3!

Note that the smallness of the thermal particle velocity
lows us to neglect the bulk viscosity term~due to interpar-
ticle collisions! in the momentum equation~1!. The friction
term due to collisions with atoms of neutral gas is omitted
well. The applicability of this approach is discussed later

The particle charge variation in the wave is governed
the kinetic charging equation. However, for real experime
tal conditions we do not need to solve this equation, beca
the typical charging time of particles,;102621023 s, is
much smaller than the time scale of the wave. Therefore,
can expect that the charge is always close to the equilibr
value given by the balance of the electron and ion fluxes
the particle surface,

Je2Ji.0. ~4!

The fluxes depend on the charge numberZ and the local
plasma density. In turn, the latter is determined by the lo
©2001 The American Physical Society12-1
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potentialf, i.e., Eq.~4! is an implicit relation betweenZ and
f. The electron flux for the Maxwell distributed electrons
@11#

Je~f,Z!52A2pa2ne0vTe
eFe2g, ~5!

wherea is the particle radius,vTe
5ATe /me is the electron

thermal velocity,F(f)5ef/Te is the dimensionless electri
potential andg(Z)5e2Z/aTe is the normalized charge num
ber. Note that the value ofg depends on the type of gas
the discharge, as well as on the discharge conditions, b
always of the order of a few@12#. In the absence of waves
the ~undisturbed! densities and the charge number sho
obey the quasineutrality condition,

ni05ne01Z0n0 .

In a nonlinear stationary wave all the variables depend
the self-similar combination

j5z2ut, ~6!

whereu is the wave velocity. As mentioned before, we co
sider two limiting cases for the ion distribution function: th
Boltzmann distribution, which is reasonable for an isotro
bulk plasma~where the rapid Maxwellization is provided b
ion-neutral collisions! and highly energetic ions with flow
velocity much higher than the IA velocity~which corre-
sponds to a region inside the plasma sheath!. For a particle
cloud suspended in the pre-sheath region we would pres
ably have some ‘‘intermediate’’ situation.

Boltzmann-distributed ions.The ion density obeys the re
lation

ni5ni0 expS 2
ef

Ti
D . ~7!

The corresponding flux on the particle surface is@11#

Ji~f,Z!52A2pa2ni0vTi
e2tF~11tg!, ~8!

wheret5Te /Ti;302100 for typical discharge conditions
Substituting Eqs.~5! and~8! in Eq. ~4! and neglecting terms
O(t21) we obtain the relation betweenF andg,

g2g01 ln~g/g0!.tF. ~9!

This is a transcendental equation with respect tog, but it can
be solved approximately assuming that the relative varia
of the charge is sufficiently small~or g/g0 close to 1, we will
return to this later!. Then, expanding ln(g/g0).(g2g0)/g0 in
Eq. ~9! we obtain (11g0

21)(g2g0).tF, or for the charge
number

Z~F!.Z0S 11
tF

11g0
D . ~10!

Using Eq.~10!, we can integrate Eq.~1! for the self-similar
variable~6! and obtain the density
02641
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M
*
2 S F1

tF2

2~11g0! D G21/2

, ~11!

where M
*
2 5mu2/Z0Te . Then, substituting Eqs.~3!, ~7!,

~10!, and~11! in the Poisson equation~2! and integrating, we
derive the ‘‘energy integral’’

1
2 lDe

2 ~Fj8!25E2U~F!, ~12!

where lDe is the electron Debye length,lDe
22

54pe2ne0 /Te , andE is the ‘‘total energy of the oscillator’’
with the Sagdeev pseudopotential

2U~F!5~11P!t21~e2tF21!1eF21

1PM
*
2 FA11

2

M
*
2 S F1

tF2

2~11g0! D21G .

~13!

HereP5Z0n0 /ne0 is the Havnes parameter which is a me
sure of the volume particle charge.

The pseudopotential~13! tends to zero atF→0. Then the
localized soliton solution of Eq.~12! can exist forE50 if ~i!
U8uF5050, ~ii ! U(F) is a potential well, and~iii !
U(Fmax)50 for some finiteFmax @but U8(Fmax)Þ0#. The
first condition is satisfied identically. The second one
quiresU9uF50,0. Expanding Eq.~13! we find that condi-
tion ~ii ! is satisfied ifM.1, whereM5u/CDA is the Mach
number~note thatM* }M ) normalized to the phase velocit
of the DA waves with variable particle charge@13#,

CDA5A 11g0

11g01
P

11P

A Z0P

11P

Ti

m
, ~14!

@when the particle fraction is small,P!1, or the charge is
large, g0@1, the influence of the charge variation on th
phase velocity vanishes—the first factor in Eq.~14! tends to
unity#. Thus we get the natural result that the DA solito
can exist only in the supersonic regime. The requirement~iii !
~which is the sufficient condition for solitons to exist! deter-
mines the maximum value of the potential,Fmax, in the
wave. For weakly supersonic solitons, 0,M21!1, we ob-
tain from Eq.~13! the single rootFmax(M),

2tFmax;
2P

11P
~M21!,

which means that forM*1 there only compressive densit
solitons exist@see Eq.~11!#. The absolute value ofFmax
increases monotonically as the Mach number grows until
argument of the square root in Eq.~13! equals zero. The
corresponding critical value of the potential,Fcr , is the
smaller root of the quadratic equation

~11g0!21~tuFcru!222tuFcru1tM
*
2 50, ~15!
2-2
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and the corresponding critical value of the Mach numbe
M cr5M (Fcr). Above M cr there is no solution. Physically
this limit arises because the travelling potential barri
Z(F)F, becomes too high—the particles cannot get acr
it and are reflected by the wave front. The reflected precu
flux upstream of the soliton leads to the formation of a sho
wave @2#. @Note that iftM

*
2 .(11g0) then Eq.~15! has no

real roots and the argument of the square root in Eq.~13! is
always positive, because the charge decreases too fas
Eq. ~10!. However, equationU(Fmax)50 has no solutions in
this case#.

In order to determine the critical valueM cr ~andFcr) let
us assume thatuFcru!1 @below we show thatFcr;O(t21)#,
so that one can expand eF.11F in Eq. ~13!. Then
U(Fcr)50 yields

tuFcru1PtM
*
2 .~11P!~etuFcru21!.

SubstitutingM
*
2 (Fcr) from Eq. ~15! we obtain the equation

for Fcr ,

112P

11P
tuFcru2

P~tuFcru!2

~11P!~11g0!
.etuFcru21. ~16!

Equation~16! can be solved approximately in the limits o
rarefied (P!1) and dense (P@1) particle clouds,

P!1: tuFcru.2P,
~17!

P@1: tuFcru.
21g0

~e22!g01e
,

wheree52.71 . . . @relative error of solution~17! for P@1
is &5%#. Using Eq.~10! we see that for reasonable cond
tions (g0*2) the maximum possible value of the relativ
charge variation is&0.3, i.e., the linear expansion of th
logarithm in Eq.~9! is justified. Substituting Eq.~17! in Eq.
~15! we determineM* (Fcr), and using the relation

M25S 1

11g0
1

11P

P D tM
*
2 ,

we finally obtain the critical Mach number,

P!1: M cr.2,

P@1: ~18!

M cr.S 21g0

11g0
DA2~e22!g0

21~4e25!g012~e21!

~e22!g01e
.

Thus in rarefied clouds the variation of the potential~17! is
weak~due to the small particle volume charge!; M cr.2 and
does not depend ong0, in fact it equals the value obtaine
without charge variations. In the opposite case of de
clouds,M cr is a function ofg0, i.e., the charge variation i
important. Figure 1 shows the dependence ofM cr on g0 for
P@1. For realistic conditions, the value ofg0 varies from
.1.5 to.6 @12#. ~Note that if we neglect the charge vari
tion in the above calculations, which formally corresponds
02641
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the limit g0→`, then M cr.1.58 for P@1. This coincides
with the value obtained in@5#!. We see that the variable
charge narrows the range of Mach numbers,M cr21, where
solitons can exist.

Highly energetic ions. Now we consider the case whe
the ion drift velocity,Vi , exceeds the velocity of IA waves
Vi@ATe /mi , and when the spread of the velocity distrib
tion is much less thanVi . Since the scale of the potentia
variation in the wave isF&1, the corresponding variation o
the drift velocity should be relatively small. Hence, we c
assume homogeneous ion density,

ni.ni0 , ~19!

which implies that ions do not participate in collective pr
cesses~screening, waves, etc.!. In this limit the cross section
for ion absorption on a particle is approximatelypa2, and
the ion flux is

Ji~f,Z!.pa2ni0Vi . ~20!

Substituting Eq.~20! together with Eq.~5! in Eq. ~4! we have
g5g01F, or for the charge number,

Z~f!5Z0~11g0
21F!. ~21!

Using Eqs.~19! and~21!, we derive from Eqs.~1! and~2! the
Sagdeev potential,

2U~F!52~11P!F1eF21

1PM
*
2 FA11

2

M
*
2 S F1

F2

2g0
D21G . ~22!

The conditionU9uF50,0 requiresM.1, where the Mach
numberM5u/C̃DA now is normalized to the DA phase ve
locity without ion screening,

C̃DA5
1

A11P/g0

AZ0P
Te

m
.

Hence only compressive supersonic solitons are possible
the pseudo-potential~22!. This is similar to the case o
Boltzmann ions. The upper Mach number limit,M cr , of the

FIG. 1. The upper Mach number limit~18! for the soliton solu-
tion, M cr , in a dense particle cloud (P@1) versus the dimension
less particle charge,g0.
2-3
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solution is determined by the argument of the square roo
Eq. ~22!. The critical potential is given by the smaller root
the quadratic equation

g0
21uFcru222uFcru1M

*
2 50, ~23!

and M cr5M (Fcr) @the argument of the square root in E
~22! is always positive ifM

*
2 .g0, but thenU(Fmax)50 has

no solution#. In order to find the critical Mach number w
start by determiningFcr . EquationU(Fcr)50 yields

~11P!uFcru2PM
*
2 512e2uFcru.

SubstitutingM
*
2 (Fcr) from Eq. ~23! we get forFcr ,

~12P!uFcru1g0
21PuFcru2512e2uFcru. ~24!

One can derive an approximate solution of Eq.~24!, which
has correct asymptotics for both rarefied and dense par
clouds~wheng0 is finite!,

uFcru.S 1

g0
1

1

2PD 21

. ~25!

Using the relation betweenM andM* ,

M25S 1

g0
1

1

PD M
*
2

we obtain the critical Mach number from Eq.~23!,

M cr.11
1

112P/g0
. ~26!

For P!1 we getFcr.2P and M cr.2. Hence, for rarefied
cloudsM cr is the same as that in the case of Boltzmann io
whereasFcr is t times greater~since ions do not participat
in the screening!. The charge variation is not important. F
dense cloudsM cr tends asymptotically to unity asP→`.
This is very different from the case of Boltzmann ion
where the range ]1,M cr @remains finite for anyP. Thus, for
the energetic streaming ion model@see Eq.~19!# the soliton
solution is practically forbidden in sufficiently dense cloud
This strong difference between the two ion models~at P
@1) is solely due to the charge variation effect. Indeed
we consider particles with constant charge~formally, we take
g0→`) with the ion distribution of Eq.~19!, then from Eq.
~22! we haveuFcru5M

*
2 /2. In this case equationU(uFmaxu)

50 has a solution~single root! uFmaxu,uFcru for any M
*
2

(M2.1), if P.1. Hence, forP.1 solitons without charge
variation are allowed for arbitraryM.1 @this can be seen
directly also from Eq.~24! which has no solution atg0
→`, if P.1#. Physically this is because the ion density~19!
remains constant inside a soliton~instead of the exponentia
increase in the case of the Boltzmann distribution!. Therefore
the term corresponding to the particle density@square root in
Eq. ~22!# can compensate the ion term for arbitrary largeM,
if a particle cloud is sufficiently dense (P.1). But when the
02641
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charge variation is taken into account, it provides an ad
tional correction to the particle density~decreasing it!, and
thus the ion term in Eq.~22! can be balanced at rather sma
M only.

Note that even if we would suppose that there is a we
dependence of the ion density onF instead of Eq.~19!, say
ni.ni0(11eF) ~wheree;Te /miVi

2!1), it does not quali-
tatively change the final expressions for the critical poten
~25! and the Mach number~26!. Such a linear variation inni
yields an additional quadratic term,1

2 (11P)euFcru2, in Eq.
~24!, and if ueu&g0

21, the equation is not changed function
ally and Eqs.~25! and ~26! are still valid for anyP.

Discussion and conclusions. Qualitatively, the soliton so-
lution for the DA waves with variable particle charge is sim
lar to that for usual IA waves in the absence of particles. T
physical mechanism of the steady-state nonlinear wave
mation is a balance between the nonlinear increase of
phase velocity and the dispersion effects which slow do
the wave steepening. The soliton solution is possible in
supersonic regime only, but there exists an upper limit
possible Mach numbers, 1,M,M cr . AboveM cr the poten-
tial of the wave becomes too high and particles remain in
frame of the wave, braking the soliton. If the particle fracti
is low, the variable charge does not affect the characteris
of the DA soliton. The influence of the charge variation
the upper limit of the Mach numbers becomes crucial
sufficiently dense particle clouds, decreasing the value
M cr . It is noteworthy that the width of the ‘‘allowed’’ Mach
number range,M cr21, depends on the ion distribution: Th
range remains finite for Boltzmann ions, but tends to zero
highly energetic streaming ions. Especially remarkable
that in the absence of charge variation the model of hig
energetic streaming ions does not have an upper limit
Mach numbers and solitons are allowed for anyM.1.

Symmetrical ‘‘pure’’ solitons are impossible in real ex
periments because of dissipation@2#. Along with the usual
~collisional! mechanisms of dissipation—particle-neutr
friction, viscosity, etc., there could also be a so-called ‘‘c
lisionless dissipation’’: Particles have some finite spread
thermal energy and thus even for allowed Mach numb
there exist some fraction of particles which are reflected
stream by the potential barrier of the wave.~This is similar to
cosmic ray shock acceleration@15#!. Formally it implies that
the ‘‘total energy of oscillator’’E in Eq. ~12! is no longer
conserved@14#, i.e., the oscillator has lost energy. All thes
mechanisms should result in shock wave formation, with
oscillatory structure behind the front due to oscillatio
around the minimum of the Sagdeev pseudo-potential@2#.
However, dissipation might be sufficiently weak in expe
ments where the neutral gas pressure is low. For exam
the neutral damping coefficient for;10 mm particles at
pressures;1 Pa isb;0.120.3 s21. A typical value of the
soliton velocity isu*CDA;3 –10 cm/s. Therefore, consid
erable loss of soliton energy occurs over a scale len
CDA /b;10–30 cm ~or more!, which is somewhat large
than the maximum possible size of typical particle clouds
experiments. Hence, we can expect that the transition o
soliton into a shock wave due to neutral gas friction is rat
slow for low pressures. The role of the particle therm
2-4
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spread might also be weak. For reasonable estimates o
thermal velocity,vTd

&0.3 cm/s, the fraction of the reflecte

particles is very small,&exp(2CDA
2 /vTd

2 );1022.

And finally, a few general remarks regarding the applic
bility of the obtained results: In experiments under grav
the particle cloud is normally suspended in the vicinity of t
sheath edge, or below it~especially, for large particles!.
Therefore the model of highly energetic ions is more reas
02641
the

-

-

able for these conditions. Possible experiments under mi
gravity might be performed in ‘‘nearly’’ isotropic plasmas
when the Boltzmann model is a better approach for ions. T
role of charge variation is determined by the shape and
of the particle cloud. If the cloud occupies a considera
volume ~much larger than the Debye length!, then the de-
scribed charge variation effects should be crucial. Howev
for thin ‘‘two-dimensional’’ clouds the contribution due t
variable charge might be rather weak.
ci.
@1# N.N. Rao, P.K. Shukla, and M.Y. Yu, Planet. Space Sci.38,
543 ~1990!.

@2# R. Z. Sagdeev, inReviews of Plasma Physics, edited by M. A.
Leontovich~Consultants Bureau, New York, 1966!, Vol. 4, pp.
23–93.

@3# F. Verheest, Planet. Space Sci.40, 1 ~1992!.
@4# R. Bharuram and P.K. Shukla, Planet. Space Sci.40, 465

~1992!.
@5# A.A. Mamun, R.A. Cairns, and P.K. Shukla, Phys. Plasmas3,

702 ~1996!.
@6# S.G. Tagare, Phys. Plasmas4, 3167~1997!.
@7# J.X. Ma and J. Liu, Phys. Plasmas4, 253 ~1997!.
@8# B. Xie, K. He, and Z. Huang, Phys. Lett. A247, 403 ~1998!.
@9# B. Xie, K. He, and Z. Huang, Phys. Plasmas6, 3808~1999!.

@10# M. Rosenberg, Planet. Space Sci.41, 229 ~1993!.
@11# F. Melandso”, T. Aslaksen, and O. Havnes, Planet. Space S

41, 321 ~1993!.
@12# A.V. Ivlev, G. Morfill, and V.E. Fortov, Phys. Plasmas6, 1415

~1999!.
@13# A.V. Ivlev and G. Morfill, Phys. Plasmas7, 1094~2000!.
@14# F. F. Chen,Introduction to Plasma Physics~Plenum, New

York, 1974!.
@15# H. Kucharek and M. Scholer, J. Geophys. Res.96, 21 195

~1991!.
2-5


